3.1.53 \(\int \frac {x \sqrt {a+c x^2}}{d+e x+f x^2} \, dx\) [53]

3.1.53.1 Optimal result
3.1.53.2 Mathematica [C] (verified)
3.1.53.3 Rubi [A] (verified)
3.1.53.4 Maple [B] (verified)
3.1.53.5 Fricas [F(-1)]
3.1.53.6 Sympy [F]
3.1.53.7 Maxima [F(-2)]
3.1.53.8 Giac [F(-2)]
3.1.53.9 Mupad [F(-1)]

3.1.53.1 Optimal result

Integrand size = 25, antiderivative size = 395 \[ \int \frac {x \sqrt {a+c x^2}}{d+e x+f x^2} \, dx=\frac {\sqrt {a+c x^2}}{f}-\frac {\sqrt {c} e \text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{f^2}-\frac {\left (2 c d e f-\left (e-\sqrt {e^2-4 d f}\right ) \left (a f^2+c \left (e^2-d f\right )\right )\right ) \text {arctanh}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}+\frac {\left (2 c d e f-\left (e+\sqrt {e^2-4 d f}\right ) \left (a f^2+c \left (e^2-d f\right )\right )\right ) \text {arctanh}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} f^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}} \]

output
-e*arctanh(x*c^(1/2)/(c*x^2+a)^(1/2))*c^(1/2)/f^2+(c*x^2+a)^(1/2)/f-1/2*ar 
ctanh(1/2*(2*a*f-c*x*(e-(-4*d*f+e^2)^(1/2)))*2^(1/2)/(c*x^2+a)^(1/2)/(2*a* 
f^2+c*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2)))^(1/2))*(2*c*d*e*f-(a*f^2+c*(-d*f+e 
^2))*(e-(-4*d*f+e^2)^(1/2)))/f^2*2^(1/2)/(-4*d*f+e^2)^(1/2)/(2*a*f^2+c*(e^ 
2-2*d*f-e*(-4*d*f+e^2)^(1/2)))^(1/2)+1/2*arctanh(1/2*(2*a*f-c*x*(e+(-4*d*f 
+e^2)^(1/2)))*2^(1/2)/(c*x^2+a)^(1/2)/(2*a*f^2+c*(e^2-2*d*f+e*(-4*d*f+e^2) 
^(1/2)))^(1/2))*(2*c*d*e*f-(a*f^2+c*(-d*f+e^2))*(e+(-4*d*f+e^2)^(1/2)))/f^ 
2*2^(1/2)/(-4*d*f+e^2)^(1/2)/(2*a*f^2+c*(e^2-2*d*f+e*(-4*d*f+e^2)^(1/2)))^ 
(1/2)
 
3.1.53.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.34 (sec) , antiderivative size = 379, normalized size of antiderivative = 0.96 \[ \int \frac {x \sqrt {a+c x^2}}{d+e x+f x^2} \, dx=\frac {f \sqrt {a+c x^2}+\sqrt {c} e \log \left (-\sqrt {c} x+\sqrt {a+c x^2}\right )-\text {RootSum}\left [a^2 f+2 a \sqrt {c} e \text {$\#$1}+4 c d \text {$\#$1}^2-2 a f \text {$\#$1}^2-2 \sqrt {c} e \text {$\#$1}^3+f \text {$\#$1}^4\&,\frac {a c e^2 \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right )-a c d f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right )+a^2 f^2 \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right )+2 c^{3/2} d e \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-c e^2 \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2+c d f \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2-a f^2 \log \left (-\sqrt {c} x+\sqrt {a+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{a \sqrt {c} e+4 c d \text {$\#$1}-2 a f \text {$\#$1}-3 \sqrt {c} e \text {$\#$1}^2+2 f \text {$\#$1}^3}\&\right ]}{f^2} \]

input
Integrate[(x*Sqrt[a + c*x^2])/(d + e*x + f*x^2),x]
 
output
(f*Sqrt[a + c*x^2] + Sqrt[c]*e*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2]] - RootS 
um[a^2*f + 2*a*Sqrt[c]*e*#1 + 4*c*d*#1^2 - 2*a*f*#1^2 - 2*Sqrt[c]*e*#1^3 + 
 f*#1^4 & , (a*c*e^2*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1] - a*c*d*f*Lo 
g[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1] + a^2*f^2*Log[-(Sqrt[c]*x) + Sqrt[a 
 + c*x^2] - #1] + 2*c^(3/2)*d*e*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*# 
1 - c*e^2*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1^2 + c*d*f*Log[-(Sqrt 
[c]*x) + Sqrt[a + c*x^2] - #1]*#1^2 - a*f^2*Log[-(Sqrt[c]*x) + Sqrt[a + c* 
x^2] - #1]*#1^2)/(a*Sqrt[c]*e + 4*c*d*#1 - 2*a*f*#1 - 3*Sqrt[c]*e*#1^2 + 2 
*f*#1^3) & ])/f^2
 
3.1.53.3 Rubi [A] (verified)

Time = 0.82 (sec) , antiderivative size = 400, normalized size of antiderivative = 1.01, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {1353, 25, 2027, 2145, 25, 224, 219, 1367, 488, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x \sqrt {a+c x^2}}{d+e x+f x^2} \, dx\)

\(\Big \downarrow \) 1353

\(\displaystyle \frac {\int -\frac {c e x^2+(c d-a f) x}{\sqrt {c x^2+a} \left (f x^2+e x+d\right )}dx}{f}+\frac {\sqrt {a+c x^2}}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\sqrt {a+c x^2}}{f}-\frac {\int \frac {c e x^2+(c d-a f) x}{\sqrt {c x^2+a} \left (f x^2+e x+d\right )}dx}{f}\)

\(\Big \downarrow \) 2027

\(\displaystyle \frac {\sqrt {a+c x^2}}{f}-\frac {\int \frac {x (c d-a f+c e x)}{\sqrt {c x^2+a} \left (f x^2+e x+d\right )}dx}{f}\)

\(\Big \downarrow \) 2145

\(\displaystyle \frac {\sqrt {a+c x^2}}{f}-\frac {\frac {\int -\frac {c d e+\left (a f^2+c \left (e^2-d f\right )\right ) x}{\sqrt {c x^2+a} \left (f x^2+e x+d\right )}dx}{f}+\frac {c e \int \frac {1}{\sqrt {c x^2+a}}dx}{f}}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\sqrt {a+c x^2}}{f}-\frac {\frac {c e \int \frac {1}{\sqrt {c x^2+a}}dx}{f}-\frac {\int \frac {c d e+\left (a f^2+c \left (e^2-d f\right )\right ) x}{\sqrt {c x^2+a} \left (f x^2+e x+d\right )}dx}{f}}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {\sqrt {a+c x^2}}{f}-\frac {\frac {c e \int \frac {1}{1-\frac {c x^2}{c x^2+a}}d\frac {x}{\sqrt {c x^2+a}}}{f}-\frac {\int \frac {c d e+\left (a f^2+c \left (e^2-d f\right )\right ) x}{\sqrt {c x^2+a} \left (f x^2+e x+d\right )}dx}{f}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\sqrt {a+c x^2}}{f}-\frac {\frac {\sqrt {c} e \text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{f}-\frac {\int \frac {c d e+\left (a f^2+c \left (e^2-d f\right )\right ) x}{\sqrt {c x^2+a} \left (f x^2+e x+d\right )}dx}{f}}{f}\)

\(\Big \downarrow \) 1367

\(\displaystyle \frac {\sqrt {a+c x^2}}{f}-\frac {\frac {\sqrt {c} e \text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{f}-\frac {\frac {\left (2 c d e f-\left (e-\sqrt {e^2-4 d f}\right ) \left (a f^2+c \left (e^2-d f\right )\right )\right ) \int \frac {1}{\left (e+2 f x-\sqrt {e^2-4 d f}\right ) \sqrt {c x^2+a}}dx}{\sqrt {e^2-4 d f}}-\frac {\left (2 c d e f-\left (\sqrt {e^2-4 d f}+e\right ) \left (a f^2+c \left (e^2-d f\right )\right )\right ) \int \frac {1}{\left (e+2 f x+\sqrt {e^2-4 d f}\right ) \sqrt {c x^2+a}}dx}{\sqrt {e^2-4 d f}}}{f}}{f}\)

\(\Big \downarrow \) 488

\(\displaystyle \frac {\sqrt {a+c x^2}}{f}-\frac {\frac {\sqrt {c} e \text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{f}-\frac {\frac {\left (2 c d e f-\left (\sqrt {e^2-4 d f}+e\right ) \left (a f^2+c \left (e^2-d f\right )\right )\right ) \int \frac {1}{4 a f^2+c \left (e+\sqrt {e^2-4 d f}\right )^2-\frac {\left (2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x\right )^2}{c x^2+a}}d\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {c x^2+a}}}{\sqrt {e^2-4 d f}}-\frac {\left (2 c d e f-\left (e-\sqrt {e^2-4 d f}\right ) \left (a f^2+c \left (e^2-d f\right )\right )\right ) \int \frac {1}{4 a f^2+c \left (e-\sqrt {e^2-4 d f}\right )^2-\frac {\left (2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x\right )^2}{c x^2+a}}d\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {c x^2+a}}}{\sqrt {e^2-4 d f}}}{f}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\sqrt {a+c x^2}}{f}-\frac {\frac {\sqrt {c} e \text {arctanh}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{f}-\frac {\frac {\left (2 c d e f-\left (\sqrt {e^2-4 d f}+e\right ) \left (a f^2+c \left (e^2-d f\right )\right )\right ) \text {arctanh}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {\left (2 c d e f-\left (e-\sqrt {e^2-4 d f}\right ) \left (a f^2+c \left (e^2-d f\right )\right )\right ) \text {arctanh}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}}{f}}{f}\)

input
Int[(x*Sqrt[a + c*x^2])/(d + e*x + f*x^2),x]
 
output
Sqrt[a + c*x^2]/f - ((Sqrt[c]*e*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]])/f - 
(-(((2*c*d*e*f - (e - Sqrt[e^2 - 4*d*f])*(a*f^2 + c*(e^2 - d*f)))*ArcTanh[ 
(2*a*f - c*(e - Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d 
*f - e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*Sqrt[e^2 - 4*d*f]*S 
qrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])])) + ((2*c*d*e*f - (e 
+ Sqrt[e^2 - 4*d*f])*(a*f^2 + c*(e^2 - d*f)))*ArcTanh[(2*a*f - c*(e + Sqrt 
[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4* 
d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 
 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]))/f)/f
 

3.1.53.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 488
Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> -Subst[ 
Int[1/(b*c^2 + a*d^2 - x^2), x], x, (a*d - b*c*x)/Sqrt[a + b*x^2]] /; FreeQ 
[{a, b, c, d}, x]
 

rule 1353
Int[((g_.) + (h_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f 
_.)*(x_)^2)^(q_), x_Symbol] :> Simp[h*(a + c*x^2)^p*((d + e*x + f*x^2)^(q + 
 1)/(2*f*(p + q + 1))), x] + Simp[1/(2*f*(p + q + 1))   Int[(a + c*x^2)^(p 
- 1)*(d + e*x + f*x^2)^q*Simp[a*h*e*p - a*(h*e - 2*g*f)*(p + q + 1) - 2*h*p 
*(c*d - a*f)*x - (h*c*e*p + c*(h*e - 2*g*f)*(p + q + 1))*x^2, x], x], x] /; 
 FreeQ[{a, c, d, e, f, g, h, q}, x] && NeQ[e^2 - 4*d*f, 0] && GtQ[p, 0] && 
NeQ[p + q + 1, 0]
 

rule 1367
Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (f 
_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(2*c*g - h*( 
b - q))/q   Int[1/((b - q + 2*c*x)*Sqrt[d + f*x^2]), x], x] - Simp[(2*c*g - 
 h*(b + q))/q   Int[1/((b + q + 2*c*x)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{ 
a, b, c, d, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c]
 

rule 2027
Int[(Fx_.)*((a_.)*(x_)^(r_.) + (b_.)*(x_)^(s_.))^(p_.), x_Symbol] :> Int[x^ 
(p*r)*(a + b*x^(s - r))^p*Fx, x] /; FreeQ[{a, b, r, s}, x] && IntegerQ[p] & 
& PosQ[s - r] &&  !(EqQ[p, 1] && EqQ[u, 1])
 

rule 2145
Int[(Px_)/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (f_.)*(x_)^2]), 
x_Symbol] :> With[{A = Coeff[Px, x, 0], B = Coeff[Px, x, 1], C = Coeff[Px, 
x, 2]}, Simp[C/c   Int[1/Sqrt[d + f*x^2], x], x] + Simp[1/c   Int[(A*c - a* 
C + (B*c - b*C)*x)/((a + b*x + c*x^2)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{a 
, b, c, d, f}, x] && PolyQ[Px, x, 2]
 
3.1.53.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(768\) vs. \(2(350)=700\).

Time = 0.79 (sec) , antiderivative size = 769, normalized size of antiderivative = 1.95

method result size
risch \(\frac {\sqrt {c \,x^{2}+a}}{f}-\frac {\frac {\sqrt {c}\, e \ln \left (x \sqrt {c}+\sqrt {c \,x^{2}+a}\right )}{f}-\frac {\left (-a \,f^{2} \sqrt {-4 d f +e^{2}}+c d f \sqrt {-4 d f +e^{2}}-c \,e^{2} \sqrt {-4 d f +e^{2}}+a e \,f^{2}-3 c d e f +c \,e^{3}\right ) \sqrt {2}\, \ln \left (\frac {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}-\frac {c \left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {\sqrt {2}\, \sqrt {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}\, \sqrt {4 {\left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}^{2} c -\frac {4 c \left (e -\sqrt {-4 d f +e^{2}}\right ) \left (x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {-2 \sqrt {-4 d f +e^{2}}\, c e +4 a \,f^{2}-4 c d f +2 c \,e^{2}}{f^{2}}}}{2}}{x -\frac {-e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{2 f^{2} \sqrt {-4 d f +e^{2}}\, \sqrt {\frac {-\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}}-\frac {\left (-a \,f^{2} \sqrt {-4 d f +e^{2}}+c d f \sqrt {-4 d f +e^{2}}-c \,e^{2} \sqrt {-4 d f +e^{2}}-a e \,f^{2}+3 c d e f -c \,e^{3}\right ) \sqrt {2}\, \ln \left (\frac {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}-\frac {c \left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {\sqrt {2}\, \sqrt {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}\, \sqrt {4 {\left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}^{2} c -\frac {4 c \left (e +\sqrt {-4 d f +e^{2}}\right ) \left (x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}\right )}{f}+\frac {2 \sqrt {-4 d f +e^{2}}\, c e +4 a \,f^{2}-4 c d f +2 c \,e^{2}}{f^{2}}}}{2}}{x +\frac {e +\sqrt {-4 d f +e^{2}}}{2 f}}\right )}{2 f^{2} \sqrt {-4 d f +e^{2}}\, \sqrt {\frac {\sqrt {-4 d f +e^{2}}\, c e +2 a \,f^{2}-2 c d f +c \,e^{2}}{f^{2}}}}}{f}\) \(769\)
default \(\text {Expression too large to display}\) \(1245\)

input
int(x*(c*x^2+a)^(1/2)/(f*x^2+e*x+d),x,method=_RETURNVERBOSE)
 
output
(c*x^2+a)^(1/2)/f-1/f*(c^(1/2)*e/f*ln(x*c^(1/2)+(c*x^2+a)^(1/2))-1/2*(-a*f 
^2*(-4*d*f+e^2)^(1/2)+c*d*f*(-4*d*f+e^2)^(1/2)-c*e^2*(-4*d*f+e^2)^(1/2)+a* 
e*f^2-3*c*d*e*f+c*e^3)/f^2/(-4*d*f+e^2)^(1/2)*2^(1/2)/((-(-4*d*f+e^2)^(1/2 
)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f 
^2-2*c*d*f+c*e^2)/f^2-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e^2) 
^(1/2)))+1/2*2^(1/2)*((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2) 
^(1/2)*(4*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2*c-4*c*(e-(-4*d*f+e^2)^(1/2)) 
/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2* 
c*d*f+c*e^2)/f^2)^(1/2))/(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2))))-1/2*(-a*f^2*(- 
4*d*f+e^2)^(1/2)+c*d*f*(-4*d*f+e^2)^(1/2)-c*e^2*(-4*d*f+e^2)^(1/2)-a*e*f^2 
+3*c*d*e*f-c*e^3)/f^2/(-4*d*f+e^2)^(1/2)*2^(1/2)/(((-4*d*f+e^2)^(1/2)*c*e+ 
2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln((((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c* 
d*f+c*e^2)/f^2-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f) 
+1/2*2^(1/2)*(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4 
*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2* 
(e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2) 
/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)))
 
3.1.53.5 Fricas [F(-1)]

Timed out. \[ \int \frac {x \sqrt {a+c x^2}}{d+e x+f x^2} \, dx=\text {Timed out} \]

input
integrate(x*(c*x^2+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="fricas")
 
output
Timed out
 
3.1.53.6 Sympy [F]

\[ \int \frac {x \sqrt {a+c x^2}}{d+e x+f x^2} \, dx=\int \frac {x \sqrt {a + c x^{2}}}{d + e x + f x^{2}}\, dx \]

input
integrate(x*(c*x**2+a)**(1/2)/(f*x**2+e*x+d),x)
 
output
Integral(x*sqrt(a + c*x**2)/(d + e*x + f*x**2), x)
 
3.1.53.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {x \sqrt {a+c x^2}}{d+e x+f x^2} \, dx=\text {Exception raised: ValueError} \]

input
integrate(x*(c*x^2+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*d*f-e^2>0)', see `assume?` for 
 more deta
 
3.1.53.8 Giac [F(-2)]

Exception generated. \[ \int \frac {x \sqrt {a+c x^2}}{d+e x+f x^2} \, dx=\text {Exception raised: TypeError} \]

input
integrate(x*(c*x^2+a)^(1/2)/(f*x^2+e*x+d),x, algorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:index.cc index_m i_lex_is_greater E 
rror: Bad Argument Value
 
3.1.53.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x \sqrt {a+c x^2}}{d+e x+f x^2} \, dx=\int \frac {x\,\sqrt {c\,x^2+a}}{f\,x^2+e\,x+d} \,d x \]

input
int((x*(a + c*x^2)^(1/2))/(d + e*x + f*x^2),x)
 
output
int((x*(a + c*x^2)^(1/2))/(d + e*x + f*x^2), x)